Занятие 40

Тема: «Вода. Растворы. Дисперсные системы, классификация, значение дисперсных систем в живой и неживой природе».

Основные понятия и термины по теме: растворы; гомогенная система; концентрация; массовая доля растворённого вещества; растворимость; насыщенный раствор; ненасыщенный раствор; пересыщенный раствор.

План изучения темы.

- 1. Вода. Состав, свойства, роль в природе, в жизни растений и животных.
- 2. Растворы, их роль в жизнедеятельности животных и растительных организмов.
- 3. Концентрация. Численное выражение концентрации растворов.
- 4. Растворимость веществ.

Краткое изложение теоретических вопросов.

В природе наиболее распространённым соединением водорода и кислорода является вода $\mathbf{H_2O}$. Молекула воды представляет собой диполь с ковалентной полярной связью между атомами кислорода и водорода. Вследствие этого вода является уникальным растворителем жидких, газообразных и твёрдых веществ. Наличием водородных связей между молекулами воды объясняются аномалии её физических свойств: максимальная плотность при 4°C, высокая температура кипения, большая теплоёмкость. Вода — один из важнейших факторов климатообразования, изменения минеральных и почвенных покровов Земли.

Растворы — это однородные (гомогенные) системы, состоящие из двух или более компонентов, а также продуктов их взаимодействия.

Гомогенной называется система, в которой нет поверхности раздела между веществами – компонентами. Растворы могут быть газообразными (воздух), жидкими (морская вода) и твёрдыми (сталь – раствор углерода в железе).

B отличии от механической смеси раствор обладает свойствами, отличными от свойств его компонентов. Например, водный раствор хлорида натрия электропроводен в отличии от диэлектриков – воды и хлорида натрия.

Для биологической и сельскохозяйственной практики особый интерес представляют водные растворы, так как они являются естественной средой, в которой развиваются все клеточные реакции.

Концентрацией раствора называется масса или количество растворённого вещества, содержащегося в определённой массе или объёме раствора.

Способы выражения концентрации растворов различны: массовая доля растворённого вещества, объёмная доля растворённого вещества, процентная концентрация и др.

Массовая доля (ω) растворённого вещества — это безразмерная физическая величина, равная отношению массы растворённого вещества к массе раствора.

Массовую долю обычно выражают в долях еденицы или в процентах (массовый процент). $\omega = m_{\text{B-Ba}} : m_{\text{D-Da}}$ или $\omega = (m_{\text{B-Ba}} : m_{\text{D-Da}}) \cdot 100\%$

Массовая доля растворённого вещества хлорида натрия в воде равна 0,1 или 10%. Это означает, что в растворе хлорида натрия массой 100 г. содержится хлорид натрия массой 10 г. и вода массой 90 г.

Растворимостью называется способность веществ растворяться.

Насыщенным называют раствор, в котором данное вещество больше не растворяется при данной температуре. Насыщенный раствор находится в равновесии с осадком.

Ненасыщенным называют раствор, в котором данное вещество ещё может растворяться при данной температуре.

В ненасыщенном растворе содержится меньше вещества, а в пересыщенном – больше, чем в насыщенном.

Дисперсные системы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы — дисперсные системы и растворы.

Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют *дисперсной фазой*. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют *дисперсионной средой*. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях — твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем.

Примеры дисперсных систем

Дисперсионная среда	Дисперсная фаза	Примеры некоторых природных и бытовых дисперсных систем
Газ	Газ	Всегда гомогенная смесь (воз- дух, природный газ)
	Жидкость	Туман, попутный газ с капель ками нефти, карбюраторная смесь в двигателях автомобилей (капельки бензина в воздухе), аэрозоли
	Твердое вещество	Пыли в воздухе, дымы, смог, самумы (пыльные и песчаные бури), аэрозоли
Жидкость	Газ	Шипучие напитки, пены
	Жидкость	Эмульсии. Жидкие среды организма (плазма крови, лимфа, пищеварительные соки), жидкое содержимое клеток (цитоплазма, кариоплазма)
	Твердое вещество	Золи, гели, пасты (кисели, студни, клеи). Речной и мор- ской ил, взвешенные в воде; строительные растворы
Твердое вещество	Газ	Снежный наст с пузырьками воздуха в нем, почва, текстильные ткани, кирпич и керамика, поролон, пористый шоколад, порошки
	Жидкость	Влажная почва, медицинские и косметические средства (мази, тушь, помада и т. д.)
	Твердое вещество	Горные породы, цветные стек- ла, некоторые сплавы

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система — раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Задания для самостоятельного выполнения:

- 1. Выучите основные понятия и термины по теме.
- 2. Вычислите массовую долю растворённого вещества, если в 68г. воды растворили 12г. соли.
- 3. Вычислите массу воды, в которой нужно растворить 25г. сахара, чтобы получить раствор с массовой долей растворённого вещества 10%.
- 4. Составьте уравнения реакций взаимодействия с водой следующих веществ: лития, кальция, оксида бария. Укажите названия веществ, образующихся в результате реакции.
- 5. Письменно ответьте на вопросы.
 - 1. Как очищается от примесей питьевая вода?
 - 2.В каких случаях применяется перегонка воды?

- 3. Дисперсные системы, виды, их роль в природе и жизни человека, его хозяйственной деятельности.
- 6. Подготовьте доклад, реферат или презентацию.

Перечень тем:

- ▶ Растворы вокруг нас;
- Вода как реагент и как среда для химического процесса;
- > Значение дисперсных систем в живой и неживой природе

Форма контроля самостоятельной работы:

- устный опрос;
- защита реферата или доклада;
- защита презентаций;
- проверка рабочих тетрадей.